High-speed gallop locomotion in the thoroughbred racehorse. I. The effect of incline on stride parameters.

نویسندگان

  • K J Parsons
  • T Pfau
  • A M Wilson
چکیده

During locomotion up an incline, power is required to elevate the centre of mass. This is provided when the animal's limbs are in contact with the ground. Measurements of stride timing variables from multiple limbs during high speed, over-ground locomotion would enhance our understanding of locomotor powering during changes in terrain. This study measured foot-on and foot-off times from galloping horses using a previously validated system of limb-mounted accelerometers and a global positioning system data logger. A detailed track survey provided incline information from all areas of the track. Measurements were made from six horses over a speed range of 9 to 13 m s(-1). Foot-fall timings were used to calculate variables, which included stance duration, protraction duration, stride frequency and duty factor. The relationship between track incline and measured variables was assessed. Stride variables from horses galloping on level (0-2% incline) and incline (8-12% incline) sections of the track were compared. Fore- and hindlimb protraction durations were significantly reduced across the speed range during incline galloping (P=0.001). This resulted in a mean increase in stride frequency from 2.01 to 2.08 strides s(-1) at 9.5 m s(-1) and 2.10 to 2.17 strides s(-1) at 12.5 m s(-1) during incline galloping. Duty factor was significantly greater for the hindlimbs during incline galloping (P<0.001), increasing from 0.31 to 0.32 at 9.5 m s(-1) and 0.28 to 0.29 at 12.5 m s(-1). Peak limb force was calculated from duty factor and assumed fore- to hindlimb impulse distributions. Smaller peak vertical forces were calculated in the forelimbs and increased peak vertical forces were calculated in the hindlimbs when galloping on an incline. Measured changes in stride timing variables differ from those reported in trotting horses. We propose that horses increase their stride frequency at a given speed during incline galloping to provide power for moving the centre of mass up the slope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed gallop locomotion in the Thoroughbred racehorse. II. The effect of incline on centre of mass movement and mechanical energy fluctuation.

During locomotion on an incline, mechanical work is performed to move an animal up the slope and increase the potential energy (PE) of the trunk and hence the centre of mass (CoM). Thus, at a given speed the total net mechanical work increases with the PE of the animal. In this study we investigate the mechanical energy (ME) fluctuations and the mechanical cost of transport (MCT) in six horses ...

متن کامل

Centre of mass movement and mechanical energy fluctuation during gallop locomotion in the Thoroughbred racehorse.

During locomotion cyclical interchange between different forms of mechanical energy enhances economy; however, 100% efficiency cannot be achieved and ultimately some mechanical work must be performed de novo. There is a metabolic cost associated with fluctuations in mechanical energy, even in the most efficient animals. In this study we investigate the exchanges between different forms of mecha...

متن کامل

Determination of stride frequency using an accelerometer during equine locomotion

Certain kinematic variables, such as stride length and stride frequency, are important when describing the gaits of a racehorse due to their clinical and performance related implications (Clayton 1993, Back et al 1995). The high numbers of biomechanic events that occur over a very short time lapse during equine locomotion make gait analysis difficult to identify using classic diagnostic techniq...

متن کامل

Effect of speed on stride parameters in racehorses at gallop in field conditions.

Stride duration, stance duration and protraction duration are key variables when describing the gaits of terrestrial animals. Together, they determine the duty factor (the fraction of the stride for which the limb maintains contact with the ground surface), from which the peak vertical force can be estimated. When an animal changes speed, these variables change at different proportions. Limited...

متن کامل

Speed, stride frequency and energy cost per stride: how do they change with body size and gait?

In this study we investigate how speed and stride frequency change with body size. We use this information to define 'equivalent speeds' for animals of different size and to explore the factors underlying the six-fold difference in mass-specific energy cost of locomotion between mouse- and horse-sized animals at these speeds. Speeds and stride frequencies within a trot and a gallop were measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2008